Numerical solution of elliptic partial differential equation using radial basis function neural networks

نویسندگان

  • Jianyu Li
  • Siwei Luo
  • Yingjian Qi
  • Yaping Huang
چکیده

In this paper a neural network for solving partial differential equations is described. The activation functions of the hidden nodes are the radial basis functions (RBF) whose parameters are learnt by a two-stage gradient descent strategy. A new growing RBF-node insertion strategy with different RBF is used in order to improve the net performances. The learning strategy is able to save computational time and memory space because of the selective growing of nodes whose activation functions consist of different RBFs. An analysis of the learning capabilities and a comparison of the net performances with other approaches have been performed. It is shown that the resulting network improves the approximation results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

Numerical Solution of Poisson's Equation Using a Combination of Logarithmic and Multiquadric Radial Basis Function Networks

This paper presents numerical solution of elliptic partial differential equations Poisson’s equation using a combination of logarithmic and multiquadric radial basis function networks. This method uses a special combination between logarithmic and multiquadric radial basis functions with a parameter r. Further, the condition number which arises in the process is discussed, and a comparison is m...

متن کامل

The use of radial basis functions by variable shape parameter for solving partial differential equations

In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 16 5-6  شماره 

صفحات  -

تاریخ انتشار 2003